Molecular Motions in (CH₃)₃XCl, X=Sn and Pb. NMR Investigations and Crystal Structure Study of (CH₃)₃PbCl and CH₃SnBr₃

Da Zhang*, Shi-Qi Dou, and Alarich Weiss

Institut für Physikalische Chemie, Physikalische Chemie III, Technische Hochschule Darmstadt, Darmstadt, Germany

Z. Naturforsch. 46a, 337-343 (1991); received December 24, 1990

The molecular motion in $(CH_3)_3XCl$, X = Sn and Pb has been investigated by measurement of the second moment $M_2(^1H)$ as function of temperature in the range 95 < T/K < 345. The methyl groups in both compounds rotate freely over the whole temperature range studied. In $(CH_3)_3SnCl$ the C_3 -rotation of $(CH_3)_3Sn$ -group about the Sn-Cl axis sets in above 273 K. To explain the NMR and INS results, the crystal structures of $(CH_3)_3PbCl$ and CH_3SnBr_3 were determined by single X-ray diffraction. $(CH_3)_3PbCl$ crystallizes in a monoclinic space group C_2^3-C2 , a=1276.7(3) pm, b=982.3(3) pm, c=547.0(2) pm, $\beta=91.12(1)^\circ$; Z=4, R=0.035. CH_3SnBr_3 crystallizes in an orthorhombic space group D_{2h}^{16} -Pnma, a=643.0(3) pm, b=1005.3(4) pm, c=1148.0(4) pm; Z=4, R=0.057

Introduction

Molecular dynamics in the solid state is an interesting subject which has been studied intensively in recent years. Using various experimental methods such as nuclear magnetic resonance (NMR), study of the spin-lattice relaxation time (T_1) as well as the second moment (M_2) , and inelastic neutron scattering (INS) technique detailed informations about internal motions of molecules or functional groups in solid state can be obtained. Recently we have reported on the rotational tunneling of methyl groups in various methyl group-IVa halides $(CH_3)_{4-n}M^{IV}X_n$ with M = Sn, Pb; X = F, Cl, Br [1], studied by inelastic neutron scattering. For the methyl group-IVa halide compounds, tunnel splittings between 0.3 and 50 μ eV at T = 4 K have been observed. Only in CH₃SnCl₃ no tunnel splitting has been found. The molecular motions in (CH₃)₃SnF with known crystal structure [2] have been investigated, using NMR techniques, by Ulrich et al. [3]; the authors measured the spin-lattice relaxation time T_1 and the second moment in the range 60 < T/K < 540.

In the present paper we report an NMR study of molecular motion in trimethyl-tin(lead) chloride via the second moment $M_2(^1\mathrm{H})$ as a function of temperature. To explain the results from NMR studies and

Reprint requests to Prof. Dr. Al. Weiss, Institut für Physikalische Chemie III, Technische Hochschule Darmstadt, Petersenstraße 20, 6100 Darmstadt, Germany.

INS investigation [1], the crystal structures of trimethyllead chloride, (CH₃)₃PbCl, and methyltin tribromide, CH₃SnBr₃, have been determined and are reported here, too.

Experimental

The three compounds studied have been synthesized according to the literature: (CH₃)₃SnCl [4], (CH₃)₃PbCl [5], and CH₃SnBr₃ [6]. The compounds are air sensitive and have to be handled in a dry inert gas atmosphere.

Crystal Structure Determination

The crystal structures of $(CH_3)_3PbCl$ and CH_3SnBr_3 were determined by single-crystal X-ray diffraction at room temperature. The experimental conditions are given in Table 1, together with crystal structure data (space groups, lattice constants etc.).

Nuclear Magnetic Resonance Measurements

The NMR line widths as well as the second moment $M_2(^1\mathrm{H})$ in $(\mathrm{CH_3})_3\mathrm{SnCl}$ and $(\mathrm{CH_3})_3\mathrm{PbCl}$ were measured in the temperature range $95 < T/\mathrm{K} < 345$, respectively. The NMR-spectra were recorded by lockin technique as the derivative of the absorption curve with a Robinson type oscillator [7, 8] operating at a constant frequency of 8.1 MHz by slowly varying

0932-0784 / 91 / 0400-0337 \$ 01.30/0. - Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Part of Dr.-Ing. Dissertation of Da Zhang, D17, Technische Hochschule Darmstadt.

Table 1. Experimental conditions for the crystal structure determinations and structure data of trimethyllead chloride, (CH₃)₃PbCl, and methyltin tribromide CH₃SnBr₃.

Compound	(CH ₃) ₃ PbCl	CH ₃ SnBr ₃
Crystal habitu Crystal size/m: Diffractometer Wavelength/pr Monochromat	$m^3 = 0.1 \times 0.08 \times 1.6$ Storm 71	prisma 0.24 × 0.24 × 2.2 0e-Stadi 4 .069 (MoK α) raphite (002)
T/K	297	300
Absorption	25 011	18 950
coefficient μ/m	-1	
Scan	25	θ/ω
$(\sin \theta/\lambda)_{max}/pn$ Measured	n^{-1} 0.005385	
reflexions	1010	1950
Symmetry inde	epen- 480	696
dent reflexions	100	
Reflexions con	sid. 466	665
$[(F_0 \ge 2 \sigma(F_0)]$ Number of fre		
	e 55	29
parameters $F(000)$	495.93	656
R(F)	0.0348	0.0573
$R_{\rm w}(F)$	0.0349	0.0512
Lattice a/r	1000000	643.0(3)
constants b/r		1005.3(4)
	1-1	1148.0(4)
β / $^{\circ}$	91.12(1)	90
$V \cdot 10^{-6} / (\text{pm})^3$	685.9(6)	742.1 (9)
Space group	C_2^3 -C2	D_{2h}^{16} -Pnma Z=4
Formula units	Z=4	Z=4
per unit cell	2.705(2)(#	07.11
$ \varrho_{\rm calc}/{\rm Mg~m^{-3}} $ $ \varrho_{\rm pykn}/{\rm Mg~m^{-3}} $		(T = 296 K) 3.3 $(T = 296 K)$
Point position	: in C_2^3 -C2 all atoms in 4	$\begin{array}{c} \text{ in } D^{16}_{2h}\text{-Pnma} \\ \text{Sn, } Br^{(1)}, \\ \text{and } C \text{ in } 4c: \end{array}$
	$x, y, z; \bar{x}, y, \bar{z}$ $\frac{1}{2} + x, \frac{1}{2} + y, z;$ $\frac{1}{2} - x, \frac{1}{2} + y, \bar{z}.$	$\begin{array}{c} X, \frac{1}{4}, z; \bar{X}, \frac{3}{4}, \bar{z}; \\ \frac{1}{2} - X, \frac{3}{4}, \frac{1}{2} + z; \\ \frac{1}{2} + X, \frac{1}{4}, \frac{1}{2} - z. \end{array}$
		Br ⁽²⁾ in 8d:
		\bar{x} , $\frac{1}{2} + v$, \bar{z} : $\frac{1}{2} - x$, \bar{v} , $\frac{1}{2} + z$:
		\bar{x} , \bar{y}
		$\begin{array}{c} x,\; y,\; z;\; \frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}-z;\\ \bar{x},\; \frac{1}{2}+y,\; \bar{z};\; \frac{1}{2}-x,\; \bar{y}, \frac{1}{2}+z;\\ \bar{x},\; \bar{y},\; \bar{z};\; \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}+z;\\ x,\; \frac{1}{2}-y,\; z;\; \frac{1}{2}+x,\; y, \frac{1}{2}-z. \end{array}$
		$x, \frac{1}{2} - y, z, \frac{1}{2} + x, y, \frac{1}{2} - z.$

Fig. 1. Projection of the crystal structure of trimethyllead chloride, $(CH_3)_3$ PbCl for $0 \le x \le 0.5$ along [100]. The hydrogen atoms are not shown. —— Shortest Pb···Cl distance between two $(CH_3)_3$ PbCl molecules, one behind the other.

the magnetic induction B_0 within a range of $\Delta B = \pm 2 \cdot 10^{-3}$ T.

The line width was taken as distance (in Tesla) between points of maximum and minimum of the dispersion curve. The second moment $M_2(^1\mathrm{H})$ was calculated using a numerical integration procedure, in which appropriate corrections for the finite modulation amplitude were incorporated [9].

Results

Crystal Structures of (CH₃)₃PbCl and CH₃SnBr₃

In Table 1 the crystallographic data (lattice constants, space groups etc.) for $(CH_3)_3$ PbCl and CH_3 SnBr₃ are given. The crystal structures were determined using the heavy-atom method (SHELX 86) [10]. Difference Fourier maps were calculated and the coordinates of atoms in $(CH_3)_3$ PbCl and in CH_3 SnBr₃ could be determined. Because of the presence of heavy atoms, Pb in $(CH_3)_3$ PbCl and Br in CH_3 SnBr₃, the positions of the H-atoms in both compounds could

Table 2. Positional and thermal parameters of trimethyllead chloride, (CH₃)₃PbCl. The temperature factor is of the form: $T = \exp\left[-2\pi^2(U_{11}\,h^2\,a^{*2} + U_{22}\,k^2\,b^{*2} + U_{33}\,l^2\,c^{*2} + 2\,U_{12}\,h\,k\,a^*\,b^* + 2\,U_{13}\,h\,l\,a^*\,c^* + 2\,U_{23}\,k\,l\,b^*\,c^*)\right].$ The U_{ii} are given in (pm)².

Atom	x/a	y/b	z/c	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Pb Cl C ⁽¹⁾ C ⁽²⁾ C ⁽³⁾	0.4018(23)	0.5 0.4447 (9) 0.5150 (80) 0.3249 (33) 0.6890 (54)		587(6) 1389(93) 677(183) 630(196) 853(337)	853 (7) 1219 (64) 1445 (416) 1058 (217) 2888 (601)	306(6) 183(42) 1372(314) 902(304) 822(288)	-56(17) 110(48) 431(407) 767(179) -36(352)	21 (4) 50 (49) - 224 (222) - 354 (202) 586 (242)	()

Table 3. Positional and thermal parameters of methyltin tribromide, CH₃SnBr₃. For the temperature factor see Table 2.

Atom	x/a	y/b	z/c	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\begin{array}{c} Sn \\ Br^{(1)} \\ Br^{(2)} \\ C \end{array}$	0.5554(2) 0.7230(4) 0.7074(3) 0.2218(27)	0.2500(0) 0.2500(0) 0.0593(2) 0.2500(0)	0.4628(1) 0.6534(2) 0.3599(2) 0.4563(20)	538 (7) 811 (14) 976 (12) 458 (92)	593 (7) 1065 (16) 714 (9) 861 (133)	529(7) 523(12) 878(12) 970(169)	$ \begin{array}{c} 0 \\ 0 \\ -50(8) \\ 0 \end{array} $	0(6) 83(11) -141(10) 112(108)	$ \begin{array}{c} 0 \\ 0 \\ -199(8) \\ 0 \end{array} $

Table 4. Interatomic distances and bond angles in trimethyllead chloride, (CH₃)₃PbCl.

Interatomic	d/pm	Interatomic	Angle/degree
Pb-Cl	276.4 (0.7)	$Cl-Pb-C^{(1)}$	94.4 (1.1)
$Pb \cdots Cl'$	281.4 *	$Cl-Pb-C^{(2)}$	87.4 (1.2)
$Pb-C^{(1)}$	221.3 (2.6)	$Cl-Pb-C^{(3)}$	92.2 (1.2)
$Pb-C^{(2)}$	219.0 (2.1)	$C^{(1)} - Pb - C^{(2)}$	130.6 (2.2)
$Pb - C^{(3)}$	201.8 (5.3)	$C^{(1)} - Pb - C^{(3)}$	108.1 (2.3)
$Cl \cdots C^{(1)}$	367.1	$C^{(2)} - Pb - C^{(3)}$	121.1 (1.6)
$Cl \cdots C^{(2)}$	344.6		(
$C1 \cdots C^{(3)}$	348.4	$Cl-Pb\cdots Cl'$	157.4 (along c)
$C^{(1)} \cdots C^{(2)}$	400.0	$Pb-Cl\cdots Pb'$	157.4 (along c)
$C^{(1)}\cdots C^{(3)}$	342.8	$C^{(1)} \cdots C^{(2)} \cdots C^{(3)}$	52.9
$C^{(2)} \cdots C^{(3)}$	366.5	$C^{(2)} \cdots C^{(1)} \cdots C^{(3)}$	58.5
$Cl \cdots C^{(1)'}$	356.5	$C^{(1)} \cdots C^{(3)} \cdots C^{(2)}$	68.6
$Cl \cdots C^{(2)'}$	303.1		
$Cl \cdots C^{(3)}$	393.1		

^{*} along c, it is shown explicitly in Figs. 1 and 6.

Table 5. Interatomic distances and bond angles in methyltin tribromide, CH_3SnBr_3 .

Inter- atomic	d/pm	Interatomic	Angle/ degree
$Sn-Br^{(1)}$	244.0 (0.2)	$C-Sn-Br^{(1)}$	118.2 (6)
$\operatorname{Sn-Br}^{(2)}$	245.4 (0.2)	$C-Sn-Br^{(2)}$	112.4 (3)
Sn-C	214.7 (1.7)	$Br^{(1)}-Sn-Br^{(2)}$	104.8 (1)
	, , , , ,	$Br^{(2)}-Sn-Br^{(2)}$	102.7 (1)
$C \cdots Br^{(1)}$	393.8	$C-Sn\cdots C$	177.0
$C \cdots Br^{(2)}$	382.7	$Sn-C\cdots Sn$	177.0
$Br^{(1)}\cdots Br^{(2)}$	387.8	$Br^{(1)} \cdots Br^{(2)} \dots Br^{(2)}$	60.4
$Br^{(2)}\cdots Br^{(2)\prime}$	383.4	$Br^{(2)}\cdots Br^{(1)}\cdots Br^{(2)}$	59.3
$Sn \cdots C$	428.6 (alon	g a)	
$C \cdots Br^{(1)}$	392.5 (alon		
$C \cdots Br^{(2)}$	398.0 (alon	g a)	
$Sn \cdots Sn$	514.8	2 -,	
$\mathbf{Br}^{(1)}\cdots\mathbf{Br}^{(2)}$	416.5 (alon	g b)	

Table 6. Second moment $M_2(^1\mathrm{H})$ -values for $(\mathrm{CH_3})_3\mathrm{SnCl}$ (in $10^{-8}\,\mathrm{T^2}$).

	M ₂ (rigid lattice)	M_2 (rotating CH_3)	M_2 (rotating CH ₃ + C' ₃ -rotation)
intra-CH ₃ intramolecular intermolecular	21.4 0.5 8.6	5.3 0.3 1.3	0 0 0.11
Total	30.5	6.9	0.11
Experiment	_	7.2	3.0

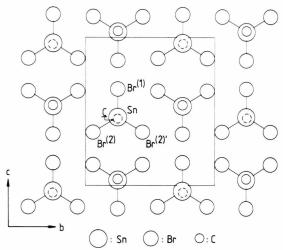


Fig. 2. Projection of the crystal structure of methyltin tribromide, CH₃SnBr₃, onto the *bc*-plane. The hydrogen atoms are not shown.

not be determined exactly. The other atomic parameters were refined by least squares cycles, and the final R-value was 0.0348 for $(CH_3)_3PbCl$ and 0.0573 for CH_3SnBr_3 . In Tables 2 and 3 the atomic coordinates and thermal parameters for $(CH_3)_3PbCl$ and CH_3SnBr_3 are listed, respectively. Interatomic distances and bond angles in $(CH_3)_3PbCl$ and in CH_3SnBr_3 are given in Tables 4 and 5, respectively. Figure 1 shows the projection of half of the unit cell $(0 \le x \le 0.5)$ of $(CH_3)_3PbCl$ onto the bc-plane, while Fig. 2 shows the projection of crystal structure of CH_3SnBr_3 onto the bc-plane.

Second Moment $M_2(^1H)$

The line widths $\Delta B(^1\mathrm{H})$ and second moments $M_2(^1\mathrm{H})$ for $(\mathrm{CH_3})_3\mathrm{SnCl}$ and $(\mathrm{CH_3})_3\mathrm{PbCl}$ are shown as functions of temperature in Figs. 3 and 4. In Tables 6 and 7 the $M_2(^1\mathrm{H})$ values measured are summarized and compared with calculated values. $M_2(^1\mathrm{H})$ for the polycrystalline samples was calculated using the well known van Vleck formalism [11, 12]:

$$M_2 = \frac{6}{5} I_i (I_i + 1) g_i^2 \beta_N^2 N_0^{-1} \sum_{i > i} r_{ij}^{-6} . \tag{1}$$



Fig. 3. Line width $\Delta B(^{1}\text{H})$ and second moment $M_{2}(^{1}\text{H})$ as function of temperature for trimethyltin chloride, (CH₃)₃SnCl.

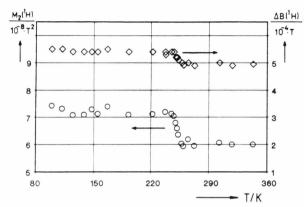


Fig. 4. Line width $\Delta B(^{1}\text{H})$ and second moment $M_{2}(^{1}\text{H})$ as function of temperature for trimethyllead chloride, (CH₃)₃PbCl.

Table 7. Second moment $M_2(^1\text{H})$ -values for $(\text{CH}_3)_3\text{PbCl}$ (in 10^{-8} T²).

	M ₂ (rigid lattice)	M_2 (rotating CH_3)	M_2 (rotating CH ₃ + C' ₃ -rotation)
intra-CH ₃ intramolecular intermolecular	21.4 0.75 10.49	5.3 0.14 1.26	0 0 0.1
Total	32.64	6.7	0.1
Experiment	_	$(7.1 \to 6.1)$	-

Here I is the nuclear spin, g is the splitting factor, β_N is the nuclear magneton, N_0 is the number of nuclei at resonance and r is the distance between interacting nuclei which are referred by indices i and j. In $(CH_3)_3SnCl$ as well as in $(CH_3)_3PbCl$ only dipolar interactions among 1H -nuclei were considered. The contributions to M_2 from ${}^{117,119}Sn{}^{-1}H$ interactions

in (CH₃)₃SnCl as well as from ²⁰⁷Pb⁻¹H interactions in (CH₃)₃PbCl are both small and unimportant within the experimental accuracy reached. They were neglected.

The crystal structure data of $(CH_3)_3SnCl$ [13] and of $(CH_3)_3PbCl$ (reported here) were used for the $M_2(^1H)$ calculations. The bond length d(C-H) was fixed to 110 pm and the ideal tetrahedron symmetry of a CH_3 -group with $\not \subset (H-C-H)=109.47^\circ$ was assumed.

Discussion

Trimethyltin Chloride, (CH₃)₃SnCl

The crystal structure of trimethyltin chloride has been studied at T = 138 K by Lefferts et al. [13]. They have shown that (CH₃)₃SnCl crystallizes monoclinic, space group C_{2h}^6 -C2/c, with 4 molecules in the unit cell. The three methyl groups of the molecule (CH₃)₃SnCl are crystallographically independent. The second moment $M_2(^1\text{H})$ in trimethyltin chloride remains constant, $M_2(^{1}\text{H}) = 7.2 \cdot 10^{-8} \text{ T}^2$, from 95 K to 270 K. Above 272 K it decreases rather fast with increasing temperature and arrives finally at $M_2(^1H) =$ $3.0 \cdot 10^{-8} \,\mathrm{T}^2$, just below the melting point (312 K). In calculating $M_2(^1H)$, three different situations must be distinguished, namely (a) the rigid lattice, without any motions (besides zero point vibrations), (b) rotating CH₃-groups, and (c) rotating CH₃-groups plus C'₃rotation of the (CH₃)₃Sn-group about the Sn-Cl axis (in (CH₃)₃PbCl the C'₃-rotation of the (CH₃)₃Pbgroup about the Pb-Cl axis). A fourth possible motional state, the overall tumbling of the molecule was not considered here. According to Gutowsky et al. [12] the intramethyl contribution to the total second moment for a rapidly reorientating CH₃-group reduces to 1/4 of the rigid lattice value.

The comparison between the experimental results and theoretically calculated $M_2(^1\mathrm{H})$ values in $(\mathrm{CH_3})_3\mathrm{SnCl}$ (see Table 6) shows that the methyl groups in $(\mathrm{CH_3})_3\mathrm{SnCl}$ are free rotating over the whole temperature range studied. The decrease of $M_2(^1\mathrm{H})$ above 272 K indicates the onset of a rotation of the $(\mathrm{CH_3})_3\mathrm{Sn}$ -group about the $\mathrm{Sn-Cl}$ axis in addition to the individual rotation of the $\mathrm{CH_3}$ -groups. The calculation gives for a free $(\mathrm{CH_3})_3\mathrm{Sn}$ -rotation plus rotating $\mathrm{CH_3}$ groups $M_2(^1\mathrm{H}) = 0.11 \cdot 10^{-8} \, \mathrm{T^2}$. Measurements at the highest temperature reached give $M_2(^1\mathrm{H}) = 3.0 \cdot 10^{-8} \, \mathrm{T^2}$. It means that the free rotation of the $(\mathrm{CH_3})_3\mathrm{Sn}$ -group is possible in the melt only.

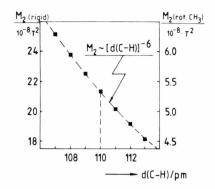


Fig. 5. The intra-CH₃ contribution to the second moment $M_2(^1\mathrm{H})$ for a rigid as well as a rotating methyl group as function of bond length $d(\mathrm{C-H})$. The tetrahedron angle (109.47°) is assumed. It is: $M_2(\mathrm{rigid}\ \mathrm{CH}_3) = 4 \cdot M_2(\mathrm{rotating}\ \mathrm{CH}_3)$ [12].

Fig. 6. Chain structure of $(CH_3)_3$ PbCl along c-axis.

As seen in Table 6 there is a small difference between the calculated $M_2(^1\text{H}) = 6.9 \cdot 10^{-8} \text{ T}^2$ and the experimental result, $M_2(^1\text{H}) = 7.2 \cdot 10^{-8} \text{ T}^2$, for (CH₃)₃SnCl with rotating CH₃-groups. A possible explanation for the discrepancy is the fixation of the ideal tetrahedron symmetry for the CH₃-groups and the fixed bond length d(C-H)=110 pm, we have applied. Equation (1) shows that the second moment $M_2(^1\text{H})$ is a steep function of the distances between H-atoms, and it therefore depends on C-H bond lengths as $M_2 \sim (r_{\text{H} \cdots \text{H}})^{-6} \sim [d(\text{C}-\text{H})]^{-6}$. Figure 5 illustrates the dependence of the intra-methyl group contribution to the second moment from the deviation of the assumed bond length by keeping the ideal tetrahedron angle (109.47°). Clearly, the intramethyl contribution to $M_2(^1H)$ increase slightly with shortening of C-H bound length, which corresponds to the reality.

Trimethyllead Chloride, (CH₃)₃PbCl, Crystal Structure and Second Moment

Trimethyllead chloride, $(CH_3)_3$ PbCl, crystallizes monoclinic, in a different space group compared with $(CH_3)_3$ SnCl, namely C_2^3 -C2, with 4 molecules in the unit cell. Figure 1 shows the projection of half of the unit cell $(0 \le x \le 0.5)$ of $(CH_3)_3$ PbCl onto the *bc*-plane. The three carbon atoms $C^{(n)}$, n=1, 2, and 3 form a

plane, which can be described by

$$0.6784 x + 1.5417 y - 5.399 z + 3.0253 = 0$$
. (2)

x, y, and z in (2) are the coordinates of the $C^{(n)}$ atoms in the unit cell. The distance between the Pb-atom and the $C^{(1)}C^{(2)}C^{(3)}$ -plane is 4.9 pm only, which means that the three C-atoms and the Pb-atom are nearly coplanar as observed in case of (CH₃)₃PbCH₃COO [14]. The distances between the Pb-atom and the two next nearest Cl-atoms above and below the plane are almost equal, 276.4 pm and 281.4 pm, respectively. The Pb-Cl bond is nearly vertical to the $C^{(1)}C^{(2)}C^{(3)}$ plane; the angle between this bond and the normal of the plane is 1.3°. The Pb-atom in (CH₃)₃PbCl is five coordinated as found in some other trimethyllead compounds, i.e. $(CH_3)_3PbN_3$ [15], $(CH_3)_3Pb(N_2)CO_2Et$ [16], and (CH₃)₃PbCH₃COO [14]. Three equatorial methyl groups and two axial C-atoms form a distorted trigonal bipyramid around the Pb-atom. The (CH₃)₃Pb-groups pile up parallel with each other along the c-axis, connected through a Cl-atom in the middle. The angle Pb-Cl···Pb is 157.4°, identical with the angle Cl-Pb···Cl. Therefore zig-zag chains $-\text{Cl}\cdots(\text{CH}_3)_3\text{Pb}-\text{Cl}\cdots(\text{CH}_3)_3\text{Pb}-\text{Cl}\cdots$ are formed along c-axis, just like in (CH₃)₃SnCl [13]. This is shown in Figure 6.

In Table 8 the bond lengths d(Pb-C) in few trimethyllead compounds with known crystal struc-

Fig. 7. The pair of CH₃SnBr₃ molecules.

Table 8. Comparison of d(Pb-C) in various trimethyllead compounds.

Compound	$Pb-C^{(n)}$	d(Pb-C)/pm	Ref.
(CH ₃) ₃ PbCH ₃ COO	n=1 $n=2$	217.1 (2.9) 2x 220.2 (3.5)	[14]
$(CH_3)_3PbN_3$	n = 1 $n = 2$	223(2) 220(1) 2x	[15]
$(CH_3)_3Pb(N_2)CO_2Et$	n=2 $n=1$ $n=2$	220(1) 2x 220(3) 221(3)	[16]
(CH ₃) ₃ PbCl	n = 3 $n = 1$ $n = 2$ $n = 3$	224(3) 221.3 (2.6) 219.0 (2.1) 201.8 (5.3)	*

^{*} this work.

ture are given. Two Pb-C bonds in $(CH_3)_3$ PbCl, $d(Pb-C^{(n)})$, n=1 and 2, are comparable with literature data. However, the third bond $d(Pb-C^{(3)})$ is extremely short.

As seen in the INS study [1], one of the methyl groups shows a rather small tunnel splitting, which could not be resolved. This should be associated with $CH_3^{(3)}$ with the shortest distance to Pb. The three crystallographical inequivalent methyl groups correspond well with the INS results [1]. The $CH_3^{(1)}$ group with $d(Pb-C^{(1)})=221.3$ pm can be associated with the tunnel energy $hv_t=3.35 \,\mu\text{eV}$ while the $CH_3^{(2)}$ -group with $d(Pb-C^{(2)})=219.0$ pm corresponds with the tunnel splitting $hv_t=1.72 \,\mu\text{eV}$.

The structure determination results for $(CH_3)_3$ PbCl here confirm the expectations from IR- and Raman studies [17]: a) $(CH_3)_3$ PbCl has a chain structure with bridging Cl-atoms; b) the Pb-atom is five coordinated; and c) the $(CH_3)_3$ Pb-group is nearly planar. The second moment $M_2(^1H)$ in $(CH_3)_3$ PbCl was studied within the temperature range $99 \le T/K \le 343$ (see Figure 4). From 343 K to 260 K the $M_2(^1H)$ is constant at $6 \cdot 10^{-8}$ T², and rising within 12 K to $7.1 \cdot 10^{-8}$ T². The calculated M_2 -values acording (1) are given in Table 7, together with the experimental results. The

ideal tetrahedron symmetry for the CH₃-group and d(C-H)=110 pm were assumed for the calculation. The interactions $^{207}\text{Pb}-^1\text{H}$ were neglected. The comparison given in Table 7 shows that all methyl groups rotate freely at T=99 K. Additional C'₃-rotation of $(\text{CH}_3)_3\text{Pb}$ -groups does not arise even at 343 K. The origin of the decrease of $M_2(^1\text{H})$ in the range 248 < T/K < 260 observed is, however, not understood. A differential thermal analysis (DTA) gives no indication of any phase transition in the range $77 \le T/\text{K} \le 310$. Compared with $(\text{CH}_3)_3\text{SnCl}$, the $M_2(^1\text{H})$ in $(\text{CH}_3)_3\text{PbCl}$ is a little smaller for the rotating methyl groups. The explanation should lie in the size of Pb-atom and therefore the increasing intramolecular methyl-methyl-distances.

Methyltin Tribromide, CH₃SnBr₃, Crystal Structure

The methyltin tribromide crystallizes orthorhombic, space group D_{2h}^{16} -Pnma, Z=4, In Fig. 2 the unit cell of CH₃SnBr₃ is projected onto the bc-plane. The structure is a centrosymmetric one, so that two neighboring molecules can be considered as a pair. This is caused by the strong dipolar interaction between the CH₃SnBr₃ molecules. There is a mirror plane through the molecule. All atoms in the molecule except Br⁽²⁾ lie in this plane, therefore two crystallographical inequivalent Br-atoms with the ratio 2:1 result. The two intramolecular $d(Sn-Br^{(n)})$, n=1 and 2, are nearly identical (see Table 5), so that three Br-atoms form a rather regular triangle. The angle between the Sn-C bond and the normal of Br⁽¹⁾Br⁽²⁾Br⁽³⁾-plane is 3.7° only. Consequently the CH₃SnBr₃ molecule is a rather regular tetrahedron.

We wish to remark that CH_3SnBr_3 could be refined in another orthorhombic, but acentric space group, C_{2v}^9 -Pan2₁, too, which has been mentioned elsewhere [1]. The R-value is 5.73% for the centrosymmetric space group (D_{2h}^{16} -Pnma) and 5.81% for acentric one (C_{2v}^9 -Pan2₁), respectively. The bond lengths and angles in both space groups differ barely only. The dominant difference between these two space groups is the molecular symmetry and the connected number of independent Br-atoms. For D_{2h}^{16} -Pnma there are two crystallographical inequivalent Br-atoms with the ratio 2:1, while for C_{2v}^9 -Pan2₁ all three Br-atoms in the molecule are independent. Petrosyan et al. have studied the ⁸¹Br-NQR at T=77 K and have found two resonance frequences (138.02 MHz and 148.34)

MHz) with intensity ratio 1:2 [18]. The NQR results confirm that the space group D_{2h}¹⁶-Pnma is the right one.

The only C-atom occupies the point position 4c, therefore all methyl groups are crystallographical identical. The INS study shows a well defined tunneling peak at hv_t =0.75 μ eV, and it was estimated to represent 50% of the methyl groups only. DTA-measurements within the temperature range $77 \le T/K \le 310$ does not show any phase transitions. However, any changes in crystal structure under T=77 K can not be ruled out. A determination of the crystal structure at low temperature, i.e. at T=10 K, is necessary to explain this discrepancy.

- [1] M. Prager, D. Zhang, and Al. Weiss, Ber. Bunsenges. Phys. Chem. 93, 1292 (1989).
- [2] H. C. Clark, R. J. O'Brien, and J. Trotter, J. Chem. Soc. 1964, 2332.
- [3] S. E. Ulrich and B. A. Dunell, J. Chem. Soc. Faraday II 68, 680 (1972).
- [4] K. A. Kozeschkow, Ber. Dtsch. Chem. Ges. 66, 1661 (1933).
- [5] G. Calingaert, F. J. Dykstra, and H. Shapiro, J. Amer. Chem. Soc. 67, 190 (1945).
- [6] P. Pfeiffer and R. Lehnhardt, Ber. Dtsch. Chem. Ges. 36, 1054 (1903).
- [7] H. M. Maurer, J. L. Ragle, and Al. Weiss, Ber. Bunsenges. Phys. Chem. 82, 602 (1978).
- [8] J. Czaplicki, N. Weiden, and Al. Weiss, Phys. Stat. Sol. (a) 113, 163 (1989).
- [9] E. R. Andrew, Phys. Rev. 91, 425 (1953).
- [10] G. M. Sheldrick, SHELX 76, Program for Crystal Structure Determination, University of Cambridge, England, 1976.

The van-der-Waals radii of methyl group and Bratom are 200 pm and 195 pm, respectively [19]. The intramolecular distances $d(Br \cdots Br')$ as well as $d(Br \cdots C)$ are all shorter than the sum of the van-der-Waals radii (see Table 5). This indicates the overlap between the Br-atoms and between methyl group and Br-atom. Remarkable is the small distance between the C- and $Br^{(2)}$ -atom, namely $d(Br^{(2)} \cdots C) = 378.5$ pm (see Figure 7). The overlap here is rather large.

Acknowledgement

This work was supported by the Bundesministerium für Forschung und Technologie, Project No. 03WS1DAR1.

- [11] J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).
- [12] H. S. Gutowsky and G. E. Pake, J. Chem. Phys. 18, 162 (1950).
- [13] J. L. Lefferts, K. C. Molloy, M. B. Hossain, D. van der Helm, and J. J. Zuckermann, J. Organomet. Chem. 240, 349 (1982).
- [14] G. M. Sheldrick and R. Taylor, Acta Cryst. B 31, 2740 (1975).
- [15] J. Müller, U. Müller, A. Loss, J. Lorberth, H. Donath, and W. Massa, Z. Naturforsch. 40b, 1320 (1985).
- [16] M. Birkhahn, E. Glozbach, W. Massa, and J. Lorbeth, J. Organomet. Chem. 192, 171 (1980).
- [17] R. J. H. Clark, A. G. Davies, and R. J. Puddenphatt, J. Amer. Chem. Soc. 90, 6923 (1968).
- [18] V. S. Petrosyan, N. S. Yashina, O. A. Reutov, E. V. Brychova, and G. K. Semin, J. Organomet. Chem. 52, 321 (1973).
- [19] L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals, Cornell University Press, 1960.